Mail.ruПочтаМой МирОдноклассникиВКонтактеИгрыЗнакомстваНовостиПоискОблакоVK ComboВсе проекты

Метаматериалы помогут решать уравнения со скоростью света

Американские физики спроектировали компактный оптический аналоговый вычислитель, который практически мгновенно решает дифференциальные и интегральные уравнения. В его основе лежит метаматериал с субволновым распределением диэлектрической проницаемости, а решение кодируется в рассеянной на нем волне. Исследование опубликовано в Physical Review Letters.

Классические компьютеры неразрывно ассоциируются с цифровой электроникой. Цифровой подход основан на представлении информации в виде единиц и нулей и ее обработке с помощью битовых операций. Такой подход естественен при сложении или вычитании целых и даже рациональных чисел. Он же применяется и при обработке аналоговых сигналов, которые представляют собой функции одной или нескольких переменных. В этом случае необходимо производить аналогово-цифровые преобразования.

Вместе с тем существует другой подход, основанный на использовании аналоговых компьютеров. В нем обработка аналоговой информации производится вычислителем напрямую. Благодаря этому аналоговый подход обладает преимуществом в скорости при работе с функциями, например, дифференцировании, интегрировании или решении дифференциальных уравнений. Строго говоря, первые вычислительные машины были именно аналоговыми, в частности, механическими (например, Антикитерский механизм). Их ключевым недостатком стало отсутствие универсальности, и, в конце концов, во второй половине ХХ века аналоговые компьютеры уступили своё место цифровым устройствам, чья вычислительная мощность на тот момент росла согласно закону Мура.

В наши дни закон Мура сильно замедлился. В поисках способов ускорения вычислений физики и инженеры все чаще стали смотреть в сторону аналоговых компьютеров. Этому способствует бурный прогресс в области создания материалов, по-новому взаимодействующих со светом. Например, мы уже рассказывали, как ученые создали оптические и терагерцовые аналоговые нейронные сети. Ключевым недостатком этих технологий стал их большой размер, что не позволяет реализовать их на чипе.

Для решения этой проблемы Андреа Алу (Andrea Alù) с коллегой из Городского университета Нью-Йорка предложили использовать метаматериалы. С помощью численных симуляций они показали, что сконструированные на их основе микрометровые аналоговые вычислители способны почти мгновенно решать дифференциальные и интегро-дифференциальные уравнения с высокой точностью и устойчивостью, если облучать их светом определенной частоты.

Некоторые математические операции проще проводить в одну сторону, чем в другую. Типичный пример — это дифференцирование или интегрирование. На практике мы чаще всего сталкиваемся с необходимостью восстановить исходные данные по набору наблюдаемых данных, произведя вычисления в «сложную» сторону. Решение таких обратных задач занимает важное место в целом ряде прикладных наук.

Применение оптического аналогового вычислителя к этой проблеме основано на представлении входных и выходных решений в виде разложения по импульсам. Вычислитель проектируется таким образом, чтобы связать эти коэффициенты согласно некоторому оператору, который содержит в себе всю информацию о задаче. Для реализации на практике невозможно сохранить бесконечность такого разложения: его приближенность должна быть сбалансирована с требуемой точностью восстановления.

Авторы предложили использовать в качестве входных и выходных данных электромагнитные волны, которые рассеиваются вычислителем, представляющим собой структуру, чья диэлектрическая проницаемость зависит от координаты некоторым заранее настроенным образом. Их задачей было описать профиль этой структуры в зависимости от того, какое уравнение вычислитель будет решать.

Для демонстрации работоспособности этого принципа, физики ограничились двумерным представлением. Оно предполагает, что все волны имеют цилиндрический волновой фронт, а диэлектрическая проницаемость зависит только от двух координат. Выбрав поляризацию волн, перпендикулярную плоскости, авторы свели электромагнитную задачу к скалярной. В этом случае входные и выходные данные имели вид одномерных функций полярного угла.

Исследователи раскладывали рассеянные и падающие волны по функциям Ханкеля первого и второго рода, соответственно. Это позволило описывать данные в виде столбцов, а само математическое преобразование в виде матрицы. Для того чтобы сопоставить этой матрице некоторое распределение диэлектрической проницаемости, физики решали задачу оптимизации для целевой функции, собранной из ошибок преобразования для всех компонент разложения.

В качестве примера физики спроектировали вычислитель, который решает дифференциальное уравнение второго порядка, а также интегральное уравнение Фредгольма второго рода. В их модели рабочая частота волн, раскладываемых по пяти гармоникам, составила 135 терагерц, радиус структуры был равен одному микрометру, а информация считывалась с радиуса, равного 1,6 микрометра. В результате вычислений они восстанавливали пространственный профиль для диэлектрических проницаемостей, равный 1 и 12. Работоспособность профиля авторы проверяли методом конечных элементов, сравнивая волны на выходе с точным решением уравнений.

eyJpZCI6MzAzOTQsInR5cGUiOjMsInRleHQiOiIiLCJpbWciOlt7InNyYyI6Imh0dHBzOlwvXC9ucGx1czEucnVcL2ltYWdlc1wvMjAyMlwvMDJcLzIxXC9kM2VjM2Y5N2YxYzMzMmUwNmVlNmI5ZTBkZjQ1YzNkNi5wbmciLCJhbHQiOiIoYSkgXHUwNDIyXHUwNDNlXHUwNDQ3XHUwNDNkXHUwNDRiXHUwNDM1IChcdTA0M2FcdTA0NDBcdTA0NDNcdTA0MzZcdTA0M2VcdTA0NDdcdTA0M2FcdTA0MzgpIFx1MDQzOCBcdTA0MzJcdTA0M2VcdTA0NDFcdTA0M2ZcdTA0NDBcdTA0M2VcdTA0MzhcdTA0MzdcdTA0MzJcdTA0MzVcdTA0MzRcdTA0MzVcdTA0M2RcdTA0M2RcdTA0NGJcdTA0MzUgKFx1MDQzYVx1MDQ0MFx1MDQzNVx1MDQ0MVx1MDQ0Mlx1MDQzOFx1MDQzYVx1MDQzOCkgXHUwNDRkXHUwNDNiXHUwNDM1XHUwNDNjXHUwNDM1XHUwNDNkXHUwNDQyXHUwNDRiIFx1MDQzY1x1MDQzMFx1MDQ0Mlx1MDQ0MFx1MDQzOFx1MDQ0Nlx1MDQ0YiBcdTA0NDBcdTA0MzBcdTA0NDFcdTA0NDFcdTA0MzVcdTA0NGZcdTA0M2RcdTA0MzhcdTA0NGYsIFx1MDQzYVx1MDQzZVx1MDQ0Mlx1MDQzZVx1MDQ0MFx1MDQzMFx1MDQ0ZiBcdTA0NDBcdTA0MzVcdTA0NDhcdTA0MzBcdTA0MzVcdTA0NDIgXHUwNDQzXHUwNDQwXHUwNDMwXHUwNDMyXHUwNDNkXHUwNDM1XHUwNDNkXHUwNDM4XHUwNDM1IFx1MDQyNFx1MDQ0MFx1MDQzNVx1MDQzNFx1MDQzM1x1MDQzZVx1MDQzYlx1MDQ0Y1x1MDQzY1x1MDQzMCBcdTA0MzJcdTA0NDJcdTA0M2VcdTA0NDBcdTA0M2VcdTA0MzNcdTA0M2UgXHUwNDQwXHUwNDNlXHUwNDM0XHUwNDMwLiAoYikgXHUwNDIxXHUwNDNlXHUwNDNlXHUwNDQyXHUwNDMyXHUwNDM1XHUwNDQyXHUwNDQxXHUwNDQyXHUwNDMyXHUwNDQzXHUwNDRlXHUwNDQ5XHUwNDM4XHUwNDM5IFx1MDQzNFx1MDQzOFx1MDQ0ZFx1MDQzYlx1MDQzNVx1MDQzYVx1MDQ0Mlx1MDQ0MFx1MDQzOFx1MDQ0N1x1MDQzNVx1MDQ0MVx1MDQzYVx1MDQzOFx1MDQzOSBcdTA0M2ZcdTA0NDBcdTA0M2VcdTA0NDRcdTA0MzhcdTA0M2JcdTA0NGMgXHUwNDMwXHUwNDNkXHUwNDMwXHUwNDNiXHUwNDNlXHUwNDMzXHUwNDNlXHUwNDMyXHUwNDNlXHUwNDMzXHUwNDNlIFx1MDQzMlx1MDQ0Ylx1MDQ0N1x1MDQzOFx1MDQ0MVx1MDQzYlx1MDQzOFx1MDQ0Mlx1MDQzNVx1MDQzYlx1MDQ0Zi4gICIsImNyZWRpdHMiOiJIZWVkb25nIEdvaCBhbmQgQW5kcmVhIEFsXHUwMGY5IFwvIFBoeXNpY2FsIFJldmlldyBMZXR0ZXJzLCAyMDIyIn1dLCJpZF9uZXdzIjozMjM1NywidGl0bGUiOm51bGwsInZ0aXRsZSI6IiIsInZzcmMiOiIiLCJ2Y3JlZGl0cyI6IiIsInBvaW50cyI6IltdIiwidm90ZXMiOjAsInVwZGF0ZWRfYXQiOiIyMDIyLTAyLTIxIDExOjM0OjI3In0=

Результаты симуляций показали, что сделанных приближений достаточно для хорошего воспроизведения решений. Модель показала устойчивость даже тогда, когда авторы добавили шум к частоте и к распределению диэлектрической проницаемости. Физики отмечают, что если расширить описанный метод до трехмерного случая, это позволит решать задачи для двумерных функций. В данный момент они работают над экспериментальной реализацией предложенного аналогового вычислителя в рамках оптики и акустики.

Ранее мы уже рассказывали, как покрытие стен офиса метаповерхностями превратило его в аналоговый вычислитель дискретного двумерного преобразования Фурье, работающего на частотах Wi-Fi.

Марат Хамадеев

Поделиться в социальных сетях

Вам может понравиться